Transitive Courant algebroids
نویسنده
چکیده
We express any Courant algebroid bracket by means of a metric connection, and construct a Courant algebroid structure on any orthogonal, Whitney sum E⊕C where E is a given Courant algebroid and C is a flat, pseudo-Euclidean vector bundle. Then, we establish the general expression of the bracket of a transitive Courant algebroid, that is, a Courant algebroid with a surjective anchor, and describe a class of transitive Courant algebroids which are Whitney sums of a Courant subalgebroid with neutral metric and Courant-like bracket and a pseudo-Euclidean vector bundle with a flat, metric connection. In particular, this class contains all the transitive Courant algebroids of minimal rank; for these, the flat term mentioned above is zero. The results extend to regular Courant algebroids, that is, Courant algebroids with a constant rank anchor. The paper ends with miscellaneous remarks and an appendix on Dirac linear spaces.
منابع مشابه
Cohomology of Courant algebroids with split base
In this paper we study the cohomology H• st (E) of a Courant algebroid E. We prove that if E is transitive, H• st (E) coincides with the naive cohomology H• naive (E) of E as conjectured by Stiénon and Xu [SX08]. For general Courant algebroids E we define a spectral sequence converging to H• st (E). If E is with split base, we prove that there exists a natural transgression homomorphism T3 (wit...
متن کاملModular Classes of Loday Algebroids
We introduce the concept of Loday algebroids, a generalization of Courant algebroids. We define the naive cohomology and modular class of a Loday algebroid, and we show that the modular class of the double of a Lie bialgebroid vanishes. For Courant algebroids, we describe the relation between the naive and standard cohomologies and we conjecture that they are isomorphic when the Courant algebro...
متن کاملAnchored Vector Bundles and Algebroids
Inspired by recent works of Zang Liu, Alan Weinstein and Ping Xu, we introduce the notions of CC algebroids and non asymmetric Courant algebroids and study these structures. It is shown that CC algebroids of rank greater than 3 are the same as Courant algebroids up to a constant factor, though the definition of CC algebroids is much simpler than that of Courant algebroids,requiring only 2 axiom...
متن کاملCourant Algebroids from Categorified Symplectic Geometry: Draft Version
In categorified symplectic geometry, one studies the categorified algebraic and geometric structures that naturally arise on manifolds equipped with a closed non-degenerate n + 1-form. The case relevant to classical string theory is when n = 2 and is called ‘2-plectic geometry’. Just as the Poisson bracket makes the smooth functions on a symplectic manifold into a Lie algebra, there is a Lie 2-...
متن کاملOn Regular Courant Algebroids
For any regular Courant algebroid, we construct a characteristic class à la Chern-Weil. This intrinsic invariant of the Courant algebroid is a degree-3 class in its naive cohomology. When the Courant algebroid is exact, it reduces to the Ševera class (in H DR(M)). On the other hand, when the Courant algebroid is a quadratic Lie algebra g, it coincides with the class of the Cartan 3-form (in H(g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005